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Abstract. With the increasing number of annotated corpora for super-
vised Named Entity Recognition, it becomes interesting to study the
combination and augmentation of these corpora for the same annotation
task. In this paper, we particularly study the combination of heteroge-
neous corpora for Medical Entity Recognition by using a meta-learning
classifier that combines the results of individual Conditional Random
Fields (CRFs) models trained on different corpora. We propose selective
data augmentation approaches and compare them with several meta-
learning algorithms and baselines. We evaluate our approach using four
sub-classifiers trained on four heterogeneous corpora. We show that de-
spite the high disagreements between the individual models on the four
test corpora, our selective data augmentation approach improves perfor-
mance on all test corpora and outperforms the combination of all training
corpora.

Keywords: Medical Entity Recognition, Data Augmentation, Meta-
Learning

1 Background

Several Natural Language Processing applications such as Question Answering
require extracting Named Entities (NE) to obtain reference semantic anchors for
the interpretation of natural language [10, 9]. Named Entity Recognition (NER)
aims to identify phrases that refer to pre-defined concepts (e.g. Person, Organi-
zation, Location) by tagging sequences of words that correspond to NE. Super-
vised machine learning (ML) methods proved to perform better in NER than
rule-based methods or unsupervised methods if a sufficient amount of relevant
training data is available [11, 17].

More and more corpora are available for supervised NER in biomedical texts
[18, 2]. Corpora with different characteristics have been shown to decrease sys-
tems’ performance in related work. For instance, for two corpora with the ap-
proximately equal numbers of annotations, the F-measure for a Support Vector
Machines (SVM) classifier was 18% lower for the corpus with less unique an-
notations and shorter sentences [15]. Combining AIMed and GENIA corpora
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for biomedical entity recognition reduced F-measure by 9.88% and combining
GENIA and GENETAG led also to a drop of 3.34% in F-measure [3].

This observation also applies to the medical domain where the same task is
often tackled from different perspectives. One of the most salient examples are
Medical Entity Recognition (MER) corpora that can consist of clinical texts,
scientific abstracts, discharge summaries or encyclopedia articles. Combining
these corpora is a challenge because of their linguistic heterogeneity (e.g. use of
acronyms vs. full names, specialist vs. public vocabulary or short vs. long sen-
tences) and their annotation bias that could be the result of different guidelines
for the definition of entity boundaries (e.g. exclusion/inclusion of modifiers),
for the exclusion/inclusion of unspecific entities such as ‘treatment‘, ‘injection‘,
‘drug‘, etc. or nested entities which may or may not be taken into account.

These different characteristics can also cause a significant decrease in per-
formance when combining different training corpora. On the other hand, a suc-
cessful corpus/model augmentation approach could lead to a significant impact
as it will reduce the need to add or expand annotated corpora while enhancing
performance in the same time.

Meta-learning proved to be effective in enhancing performance through com-
binations of different systems and feature sets for the same corpus [16, 3]. How-
ever, as far as we know, no successful approach has been proposed to combine
models obtained from heterogeneous corpora for MER. In this paper we investi-
gate such combination with two selective data augmentation approaches based on
inter-corpus agreements. We conduct experiments on two clinical texts corpora:
i2b2’10 [18] and SemEval’15 [12] and two scientific abstracts corpora: NCBI
[2] and Berkeley [13]. Statistics on each corpus are presented in Table 1. We
compare our selective data augmentation approaches with Conditional Random
Fields and different meta-learning algorithms applied to the union of all train-
ing corpora. The obtained results show that our data augmentation approach
outperforms all individual classifiers and meta-learning baselines.

We present our methods and baselines in the following section. In section 4
we discuss the obtained results which are presented in section 3.

2 Methods

We consider the combination of different models built from heterogeneous train-
ing corpora using a meta-learning classifier. We propose new data augmentation
methods and compare them with the individual classifiers and two different
meta-learning baselines which are presented in this section.

2.1 Individual Classifiers

We represent the NER problem through the IOB labels at token level (i.e. I: In-
side, O: Out, B: Beginning). Conditional Random Fields (CRFs) [7] have shown
success in many sequence labelling tasks such as parts-of-speech (POS) tagging
[14, 6] and NER [8, 5]. We build an individual CRF classifier on each corpus using
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Corpus Genre Entity
Types

Size: training & test
corpora

Training:
Token Nbr

Training: Pos.
Class Balance

i2b2
2010

Discharge summaries
and progress notes.

Problem,
Treatment,
Test

349 files for training
+ 477 files for test
(76,665 sentences).

260,538 10.93

SemEval
2015

Clinical notes from
MIMIC II database.

Problem 298 files for training
+ 133 files for test.

253,066 7.51

Berkeley
2004

Scientific abstracts
and titles from
MEDLINE.

Problem,
Treatment

2,655 sentences for
training + 1,000 sen-
tences for test.

47,293 4.22

NCBI
2014

PubMed abstracts. Problem 693 abstracts for
training + 100
abstracts for test.

153,425 7.62

Table 1. Statistics on each corpus.

the same features for each corpus. We note by Mi each individual model built
from a training corpus i. The feature set includes:

– Word features: The word itself, 2 preceding words, 3 following words, and
their lemmas. An additional feature that indicates whether the current word
is a stop word or not.

– Morpho-syntactic features: POS tags of the word itself, 2 previous words and
3 following words. We used Stanford Parser for POS tagging and tokenization
[1]. Additional features include: next verb, next noun and next adjective or
adverb.

– Orthographic features: Presence of hyphen, plus sign, ampersand or slash.
The word is a number, a letter, a punctuation sign or a symbol. The word
is in uppercase, capitalized, in lowercase (AA, Aa, aa). Prefixes of different
lengths (from 1 to 4). Suffixes of different lengths (from 1 to 4).

2.2 Meta-Learning Approach

We used the results of the individual models as features to build a meta-learning
classifier. Individual models are trained and tested on the training corpora only.
For meta-learning, we consider the set of features MF :

– the POS tag of the token K.
– the N labels (I, O, or B) predicted by each individual model for K.

– the POS tag of the previous token K−1.
– the N labels (I, O, or B) predicted by each individual model for K−1.
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We do not use other word-level features such as the words and lemmas in
order to bypass domain adaptation and corpus bias.

We generate a meta-learning dataset di from each individual training corpus
ci using the set of features MF . Meta-test datasets are constructed from the
original test corpora with the same set of features MF . We train several meta-
algorithms on each meta-learning dataset and evaluate them on all meta-test
datasets individually.

2.3 Selective Data Augmentation

The goal of selective data augmentation is to select the most relevant data to
augment the target meta-learning dataset di from other meta-learning datasets
dj , j 6= i. By augmenting these datasets we are driving the learning algorithm to
take into account the decisions of the individual model(s) that are selected by
the augmentation approach.

We consider the NER task as a token classification problem. In that perspec-
tive, the intuition of our selective data augmentation approaches is that negative
examples (i.e. ’O’ class in the IOB format) are best detected with the train por-
tion of the same corpus as it has significantly more examples than the positive
classes (i.e. I and B in the IOB format). The goal is therefore to increase the
number of positive examples with relevant data from the external heterogeneous
corpora in order to reach a positive-class ratio , noted O

′
, higher than the initial

ratio, noted O.
We address this problem using the level of agreement between the positive-

class labels predicted by the individual models for a given test corpus t. We use
the F-measure as the pairwise agreement At(M1,M2) between the predictions
of the individual models M1 and M2 for a given test dataset t. In order to have
an application-driven (semantic) agreement we compute At(M1,M2) over entity
spans rather than token labels. Table 2 presents agreement values for the four
corpora considered in our experiments. To avoid corpus bias, we compute the
agreement between two individual models as their average agreement over all
test corpora:

A(M1,M2) =

∑N
i=1 Ati(M1,M2)

N
(1)

Where N is the total number of test corpora.
For a given meta-learning dataset d1, a heterogeneous dataset d2 is likely to be

a relevant source for data augmentation if it has a high agreement value. Our first
augmentation approach, called Most Agreeing auGmEntation (MAGE) re-
lies on this assumption by adding positive examples only from the most agreeing
model. The positive examples to be added to a training dataset d1 are taken
randomly from the dataset di that satisfies A(M1,M2) = maxk A(M1,Mk) until

the target positive class ratio O
′

d1
is reached or until positive examples from di

are exhausted.
In a second augmentation approach, called HIgher Ratio augmEntation

(HIRE) we use the positive-class ratio of each training dataset as an indicator
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Agreement (F-measure %) i2b2-test SemEval-Test Berkeley-Test NCBI-Test

Model 1 Model 2 ES IS ES IS ES IS ES IS

i2b2-train
SemEval-train 50.90 80.14 50.61 79.58 41.09 77.38 25.36 60.40
Berkeley-train 20.86 28.04 18.41 22.76 42.68 63.37 14.49 26.39

NCBI-train 21.93 35.79 18.50 30.71 34.95 62.28 20.38 51.54

SemEval-train
Berkeley-train 24.40 29.87 19.88 22.92 48.63 68.25 26.41 35.94

NCBI-train 26.97 37.86 21.68 31.19 43.42 67.34 39.54 60.09

Berkeley-train NCBI-train 37.62 50.74 29.85 41.40 50.11 73.97 23.54 36.55

Table 2. Agreement (F-measure) between individual models pairwise. Highlighted:
first and second best agreement on each test corpus. ES: Exact Span. IS: Inexact Span.

of reliability and restrict data augmentation to the training datasets di that
satisfy: Odi

> Od1
and A(M1,Mi) > D. D is used as a threshold to avoid using

datasets having low agreement with d1 which may bring more noise than useful
data.

From another point of view, datasets with low agreement might be more
likely to detect new entities as they carry the highly different perspective of
their heterogeneous corpora. In order to benefit from all levels of agreement,
we propose a third data selection approach called Proportional Agreement
auGmEntation (PAGE). PAGE selects from each dataset di an amount of
random data PAGEd1(di) that is proportional to the relative agreement between
di and the dataset d1 to be augmented. The relative agreement RA(d1, di) is
defined as (N is the number of test corpora):

RA(d1, di) =
Exp(A(M1,Mi))∑N

k=1 Exp(A(M1,Mk))
(2)

Equation 3 presents the exact formula for PAGEd1
(di):

PAGE
O

′
c1

d1
(di) = Rd ×

Exp(A(M1,Mi))∑
k Exp(A(M1,Mk))

× (P
′
d1 − Pd1) (3)

– P
′

d1
represents the number of positive examples needed to reach the target

positive-class ratio O
′

c1 .
– Pd1

is the number of initial positive examples in d1.
– Exp is used to highlight further the gaps in agreement and avoid drowning

the most agreeing corpus by the total number of corpora.
– Rd is a reduction factor used to keep the same initial proportions if the posi-

tive examples from a dataset di are exhausted before reaching PAGE
O

′
d1

d1
(di).

It is computed automatically at runtime.

The training set obtained after augmentation is given as input to a Bagging
algorithm. Bagging was selected because it provided a slightly better or sim-
ilar performance when compared to several other algorithms including Neural
Networks, Dagging, Stacking, Multi-Boost and Ada-Boost.
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3 Experiments

We consider two meta-learning baselines:

– A Conditional Random Fields model: AllCRF , built from the union of all
training corpora using the same features set as the individual classifiers.

– The best-performing meta-learning algorithm among Bagging, Dagging, Stack-
ing, Multi-Boost and Ada-Boost: Allmeta, trained on the union of all training
corpora with the set of features MF defined is section 2.2.

In this section, we evaluate the ability of the meta-learning baselines and the
selective data augmentation approaches in the identification of named entities
referring to medical problems. The evaluation measures are: Precision, Recall,
and F-measure. We use the four corpora described in Table 1 that have different
genres (clinical text vs. scientific abstracts), different annotation rules, different
sizes and different positive-class ratios. We first evaluate each individual model
on the four test corpora (cf. Table 3) then present the results of the different
augmentation approaches in Table 4. We used the Weka platform [4] to compare
different algorithms with our augmented datasets approach. In these experiments
we set the target class balance O

′
to 20 and the agreement threshold D to 0.5

for the HIRE approach. We discuss the impact of different values for O
′

and D
in section 4.

F-measure (%) i2b2-Test SemEval-Test Berkeley-Test NCBI-Test

ES IS ES IS ES IS ES IS

I2b2-train R 74.9 83.7 41.9 72.7 58.0 87.1 24.9 62.0
P 84.8 95.0 47.9 81.0 44.1 67.2 19.9 48.1
F 79.59 89.03 44.74 76.66 50.1 75.9 22.1 54.1

SemEval-train R 46.0 73.2 64.5 72.7 40.6 75.3 34.8 54.1
P 55.2 91.8 75.8 85.5 38.3 73.8 41.9 65.1
F 50.2 81.4 69.7 78.6 39.4 74.5 38.0 59.1

Berkeley-train R 11.3 15.5 09.1 11.4 38.6 57.6 12.49 20.0
P 70.2 96.9 75.5 94.5 58.5 86.6 60.9 97.9
F 19.6 26.7 16.25 20.3 46.5 69.1 20.72 33.3

NCBI-train R 12.5 19.8 11.3 16.2 32.06 53.5 75.1 82.6
P 56.5 93.8 57.7 82.6 48.3 82.4 86.0 94.6
F 20.5 32.7 18.9 27.1 38.5 64.8 80.2 88.2

Table 3. The impact of training and testing on different corpora: Comparison of the
performance of individual classifiers. ES: Exact Span. IS: Inexact Span.

4 Discussion

We tested 11 target ratio O
′
values in [10, 20] and four more values in {30, 40, 50, 60}.

The target positive-class ratio O
′

of 20 led to best results in all 3 augmentation
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F-measure (%) i2b2-Test SemEval-Test Berkeley-Test NCBI-Test

ES IS ES IS ES IS ES IS

Ind. R 74.9 83.7 64.5 72.7 38.6 57.6 75.1 82.6
P 84.8 95.0 75.8 85.5 58.5 86.6 86.0 94.6
F 79.5 89.0 69.7 78.6 46.5 69.1 80.2 88.2

All(CRF ) R 66.5 82.0 58.5 74.6 53.7 82.7 74.0 83.1
P 76.9 95.7 67.8 85.9 50.9 78.2 82.9 93.1
F 71.3 88.4 62.8 79.8 52.2 80.4 78.2 87.8

All(meta) R 41.9 73.3 40.3 55.2 53.0 82.2 79.7 88.3
P 49.8 87.0 46.8 64.1 38.1 59.2 54.2 60.1
F 45.5 79.6 43.3 59.3 44.3 68.9 64.5 71.5

MAGE20 R 75.3 89.0 77.4 84.2 47.6 80.4 77.5 88.1
P 73.8 87.3 71.1 77.3 56.3 68.0 62.9 71.6
F 74.5 88.1 74.1 80.6 51.6 73.7 69.4 79.0

PAGE20 R 71.22 89.0 77.3 84.2 55.9 82.9 76.2 88.4
P 70.5 88.2 69.6 75.8 46.1 68.4 63.3 73.5
F 70.8 88.6 73.3 79.8 50.5 75.0 69.2 80.3

HIRE20
0.5 R 76.6 84.0 77.4 84.2 68.3 90.5 78.5 83.6

P 84.7 92.8 71.1 77.3 45.0 59.7 88.8 94.6
F 80.4 88.2 74.1 80.6 54.3 72.0 83.3 88.8

Table 4. Corpus Augmentation Results. Parameters: O
′

= 20, D = 0.5.

methods. With that setting, all positive examples from the selected corpora were
exhausted for the 3 methods (values higher than 20 led to the exact same re-
sults). Lower values of O

′
(< 20) led to much lower performance depending on

the method and corpus. This can be explained by the random data subset se-
lection which may not lead to sufficiently correlating feature-vector patterns. It
can also be explained by the fact that agreement levels were computed over the
full models that used all of their respective examples.

HIRE provided the best performance compared to both the individual mod-
els and the other data augmentation methods. This is supported by our obser-
vations from the output of both MAGE and PAGE, where using corpora with
lower class ratio proved to drop performance in all cases. Table 5 shows the
corpora selected for augmentation in each method. The best results for HIRE
were obtained by our first attempt to set an agreement threshold of 50%. Starting
from a threshold lower than 49% performance decreases significantly for NCBI
as it is then augmented from the SemEval dataset (agreement of 49.1%). This
threshold needs to be tested with more corpora and different entity types to
validate further its empiric relevance.

PAGE was the worst performing augmentation method. This particularly
shows the sensitivity of the meta datasets to noisy data. For instance the perfor-
mance on NCBI dropped by 15 points by adding 9% more instances extracted
randomly from the SemEval dataset. The same observation can be made on the
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augmentation of the i2b2 dataset, where performance dropped significantly with
only 1.0% more examples extracted from the Berkeley dataset (cf. Table 5).

Source Corpus
Corpora Selected for Augmentation

MAGE20 PAGE20 HIRE20
0.5

i2b2 SemEval SemEval(67.2%), Berkeley (1.0%), NCBI(1.0%) ∅
SemEval i2b2 i2b2(148.6%), NCBI (18.3%), Berkeley(8.8%) i2b2

Berkeley NCBI NCBI(341.5%), SemEval(97.3%), i2b2(26.04%) NCBI

NCBI Berkeley Berkeley(17.2%), SemEval(9.9%), i2b2(1.2%) ∅
Table 5. Corpora selected to augment each dataset according to augmentation method.
The percentage is computed w.r.t. the number of positive examples in the source
dataset. Lack of percentage means all positive examples from the corpus have been
used for augmentation.

Overall, our experiments show that:

– F-measure based agreement computed over a set of several heterogeneous
test corpora is effective in ordering the datasets according to their relevance
for data augmentation,

– a random subset selection is ineffective if the agreement level is low (even
for very small subsets),

– corpora with (significantly) lower class balance are not good candidates for
augmentation.

From additional experiments, we found that using the agreement ratios as
features for the meta-algorithm did not have any impact on the results, as well as
several nonlinear combinations of these ratios. We attribute this lack of influence
mainly to the lack of variability in the set of values of the agreement measures
(or their combination) and also in the recurring feature-vector patterns at token
level.

5 Conclusion

Our approach allows benefiting from heterogeneous corpora for Named Entity
Recognition. Our experiments on four different corpora showed that selective
training data augmentation works better than the combination of all corpora.
F-measure was improved on all corpora with an average increase of 4.3%. We also
found that the global agreement level between label predictions of the pairwise
models is an effective metric in selecting relevant sources for data augmentation
when used with potential reliability indicators such as the class balance of each
corpus. In order to gain further insights, we also plan to conduct these experi-
ments with other entity types and corpora. While word features did not allow
combining the corpora (cf. CRF results in Table 4) the semantic abstractions
of each word might be an approach to building a suitable feature set for data
augmentation in the future.
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